Ультразвуковой концентратор. Ультразвуковая колебательная система. Малогабаритная ультразвуковая колебательная система для ручных инструментов

5 РАЗРАБОТКА УЛЬТРАЗВУКОВЫХ КОЛЕБАТЕЛЬНЫХ СИСТЕМ ДЛЯ РЕАЛИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА РАЗМЕРНОЙ ОБРАБОТКИ

    1. Конструктивные схемы и состав ультразвуковых колебательных систем

В состав любой ультразвуковой технологической установки, в том числе и в состав ультразвуковых аппаратов для размерной обработки материалов, входят источник энергии (генератор электрических колебаний) и ультразвуковая колебательная система.

УЗ колебательная система состоит из преобразователя, согласующего элемента и рабочего инструмента (излучателя).

В преобразователе (активном элементе) колебательной системы происходит преобразование энергии электрических колебаний в энергию упругих колебаний ультразвуковой частоты, и создается знакопеременная механическая сила.

Согласующий элемент системы (пассивный концентратор) осуществляет трансформацию скоростей и обеспечивает согласование внешней нагрузки и активного внутреннего элемента.

Рабочий инструмент создает ультразвуковое поле в обрабатываемом объекте или непосредственно воздействует на него.

Важнейшей характеристикой УЗ колебательных систем является резонансная частота. Обусловлено это тем, что эффективность технологических процессов определяется амплитудой колебаний (значений колебательных смещений), а максимальные значения амплитуд достигаются при возбуждении УЗ колебательной системы на резонансной частоте. Значения резонансных частот УЗ колебательных систем должны быть в пределах разрешенных диапазонов (для УЗ аппаратов для размерной обработки это частоты соответствуют 18, 22, 44 кГц).

Отношение накопленной УЗ колебательной системой энергии к энергии, используемой для технологического воздействия за каждый период колебаний, называется добротностью колебательной системы. Добротность определяет максимальную амплитуду колебаний на резонансной частоте и характер зависимости амплитуды колебаний от частоты (т.е. ширину частотного диапазона).

Внешний вид типичной ультразвуковой колебательной системы показан на рисунке 5.1 . Она состоит из преобразователя - 1, трансформатора (концентратора) - 2, рабочего инструмента - 3, опоры - 4 и корпуса - 5.

Распределение амплитуды колебаний А и сил (механических напряжений) F в колебательной системе имеет вид стоячих волн (при условии пренебрежения потерями и излучением).

Как видно из рисунка 5.1, существуют плоскости, в которых смещения и механические напряжения всегда равны нулю. Эти плоскости называются узловыми. Плоскости, в которых смещения и напряжения минимальны, называются пучностями. Максимальные значения смещений (амплитуд) всегда соответствуют минимальным значениям механических напряжений и наоборот. Расстояния между двумя соседними узловыми плоскостями или пучностями всегда равны половине длины волны.



Рисунок 5.1 - Двухполуволновая колебательная система и распределение амплитуд колебаний А и действующих механических напряжений F

В колебательной системе всегда имеются соединения, обеспечивающие акустическую и механическую связь её элементов. Соединения могут быть неразъемными, однако при необходимости смены рабочего инструмента соединения выполняются резьбовыми.

УЗ колебательная система вместе с корпусом, устройствами подвода питающего напряжения и вентиляционными отверстиями выполняется обычно в виде отдельного узла. В дальнейшем, используя, термин УЗ колебательная система мы будем говорить обо всем узле в целом.

Используемая в УЗ аппаратах технологического назначения колебательная система должна удовлетворять ряду общих требований:

1). Работать в заданном частотном диапазоне;

2). Работать при всех возможных в ходе технологического процесса изменениях нагрузки;

3). Обеспечивать необходимую интенсивность излучения или амплитуду колебаний;

4). Иметь максимально возможный коэффициент полезного действия;

5). Части УЗ колебательной системы, контактирующие с жидкостью должны обладать кавитационной стойкостью;

6). Иметь жесткое крепление в корпусе;

7). Должна иметь минимальные габариты и массу;

8). Должны выполняться требования техники безопасности.

Ультразвуковая колебательная система, показанная на рисунке 5.1, является двухполуволновой колебательной системой. В ней преобразователь имеет резонансный размер, равный половине длины волны УЗ колебаний в материале преобразователя. Для увеличения амплитуды колебаний и согласования преобразователя с обрабатываемой средой используется концентратор, имеющий резонансный размер, соответствующий половине длины волны УЗ колебаний в материале концентратора.

Если показанная на рисунке 5.1 колебательная система выполнена из стали (скорость распространения УЗ колебаний в стали более 5000 м/с), то ее продольный размер более 23 см.

Для удовлетворения требований обеспечения высокой компактности и малого веса используются полуволновые колебательные системы, состоящие из четвертьволновых преобразователя и концентратора. Такая колебательная систем схематично показана на рисунке 5.2. Обозначения элементов колебательной системы соответствуют обозначениям рисунка 5.1.

При реализации конструктивной полуволновой схемы удается обеспечить минимально возможные продольный размер и массу УЗ колебательной системы, а также уменьшить число механических соединений.

Недостатком такой колебательной системы является соединение преобразователя с концентратором в плоскости наибольших механических напряжений. Однако этот недостаток, как будет показано далее, удается частично устранить путем смещения активного элемента преобразователя от точки максимальных действующих напряжений.

УЗ колебания высокой интенсивности в технологических аппаратах создаются при помощи магнитострикционных и пьезоэлектрических преобразователей.



Рисунок 5.2 - Полуволновая колебательная система и распределение амплитуд колебаний А и действующих напряжений F

Магнитострикционные преобразователи способны обеспечить большие мощности излучения УЗ колебаний, однако требуют применения принудительного водяного охлаждения. Это делает их непригодными для использования в многофункциональных малогабаритных аппаратах широкого применения.

Пьезокерамические материалы характеризуются очень высокой рабочей температурой (более 200°С) и поэтому используются без принудительного охлаждения. Поэтому, преобразователи мощностью до 1 кВт, как правило, изготавливаются из искусственных пьезокерамических материалов на основе цирконата-титаната свинца с различными добавками.

Современные пьезокерамические материалы типа ПКР-8М, ЦТС-24 предназначенные для использования в высокоинтенсивных технологических установках, по своим мощностным характеристикам не уступают магнитострикционным материалам, а по КПД значительно превосходят их .

Кроме того, из пьезокерамики могут быть изготовлены пьезоэлементы практически любой формы - круглые диски, квадратные пластины, кольца и др. Поскольку пьезокерамические элементы при изготовлении подвергаются специальной технологической операции - поляризации в электрическом поле с напряженностью около 5 кВ/мм, изготовление пьезоэлементов диаметром более 70 мм и толщиной более 30 мм технологически невозможно, и поэтому на практике они не применяются .

Из пьезокерамики изготавливаются круглые пластины и кольцевые элементы, имеющие размеры, представленные в таблице 5.1.

Продольный размер пьезоэлемента (его толщина) определяется свойствами материала и заданной рабочей частотой. При использовании пьезоматериалов типа ЦТС или ПКР, характеризуемых скоростью распространения продольных УЗ колебаний  3500 м/с, полуволновой резонансный преобразователь на частоту 22 кГц будет иметь продольный размер, равный

.

Таблица 5.1 - Типоразмеры изготавливаемых пьезоэлементов

Диаметр внешний, мм

Диаметр внутренний, мм

Толщина, мм

Пьезоэлементы такой толщины промышленностью не производятся. Поэтому в УЗ колебательных системах, выполненных на основе пьезокерамических материалов применяются преобразователи типа «сэндвич», предложенные Ланжевеном.

Такие преобразователи состоят из двух металлических накладок цилиндрической формы, между которыми закреплен активный элемент из пьезокерамики. Металлические накладки действуют как добавочные массы и определяют резонансную частоту преобразователя.

Возбуждение активного элемента осуществляется таким образом, что вся система работает как полуволновой резонансный преобразователь. Типичная схема полуволнового преобразователя показана на рисунке 5.3.



Рисунок 5.3 - Полуволновой пьезоэлектрический преобразователь

Преобразователь состоит из двух пьезокерамических кольцевых элементов 1, излучающей накладки 2, отражающей накладки 3, прокладок из мягкой проводящей фольги 4 и стягивающего болта 5. Для электрической изоляции внутренней цилиндрической поверхности пьезоэлементов от металлического стягивающего болта применяется изолирующая втулка 6.

Поверхности соединения пьезоэлементов и накладок при сборке преобразователей тщательно притираются. Стягивающий болт и мягкие (обычно - медные) прокладки обеспечивают прочное механическое соединение. Создание предварительного механического напряжения в пьезоэлементах (более 20 МПа/см 2) позволяет повысить эффективность работы преобразователя. Для создания необходимых стягивающих усилий используются стягивающие болты М12...М18 с мелкой резьбой. Необходимость использования болтов указанных диаметров обуславливает необходимость применения в преобразователях кольцевых пьезоэлементов с внутренним диаметром более 14 мм (с учетом необходимости применения изолирующих втулок).

Медь под действием стягивающих давлений растекается, заполняет микронеровности поверхностей пьезоэлементов (обтюрация) и накладок и тем самым обеспечивает надежный акустический контакт. Для снижения напряжения возбуждения, питающего УЗ преобразователь, а также для обеспечения возможности заземления верхней и нижней накладок активный элемент собирается из двух пьезоэлементов одинаковой толщины. Пьезоэлементы установлены таким образом, что их вектора поляризации направлены встречно. При этом необходимое напряжение возбуждения снижается в два раза, а сопротивление преобразователя на резонансной частоте составляет четвертую часть сопротивления преобразователя с одной пластиной.

На эффективность работы преобразователя влияет положение пьезоэлементов в системе (в узловой плоскости, в пучности или при промежуточном положении между узлом и пучностью колебаний), толщина пьезоэлементов, соотношение удельных волновых сопротивлений (произведения плотности материала на скорость распространения УЗ колебаний в нем) пьезоэлементов и накладок.

Наиболее тяжелые условия по прочностным характеристикам создаются при расположении пьезоэлементов в узловой плоскости колебаний, т.е. в плоскости максимальных механических напряжений. Удельная мощность излучения преобразователя в этом случае ограничивается прочностью пьезоматериала. Помещение пьезоэлементов в конце преобразователя (в пучности колебаний) дает возможность получить максимальный КПД. Уменьшаются механические напряжения в рабочем сечении, что позволяет увеличить подводимую к пьезоэлементам мощность электрического сигнала. Однако высокое входное сопротивление преобразователя в этом случае требует значительного повышения питающего напряжения, что для многофункциональных аппаратов, используемых, в частности, в бытовых условиях, нежелательно.

Большое значение при использовании преобразователей с активными пьезокерамическими элементами имеет стабильность их работы. Потери в пьезокерамическом материале, накладках, опорах приводят к собственному нагреву преобразователя. Кроме того, в ходе технологического процесса происходит нагрев обрабатываемых материалов, изменение внешней нагрузки за счет изменения свойств обрабатываемых материалов. Эти дестабилизирующие факторы приводят к изменению резонансной частоты преобразователя, его входного сопротивления и излучаемой мощности.

Влияние этих дестабилизирующих факторов оказывается максимальным при расположении пьезоэлементов в узловой плоскости .

Оптимальным вариантом работы составного преобразователя является размещение пьезоэлементов между узловой плоскостью и торцом отражающей накладки. При этом получаются промежуточные усредненные условия по прочности пьезоматериала, КПД и стабильности работы преобразователя.

Максимальная амплитуда колебаний пьезоэлектрических преобразователей даже в резонансном режиме небольшая (обычно не более 3...10 мкм). Поэтому для увеличения амплитуды колебаний рабочего инструмента и согласования преобразователя с нагрузкой (обрабатываемой средой) применяются УЗ концентраторы. Для получения высокого электроакустического КПД необходимо, чтобы отношение сопротивления обрабатываемой среды (отношение излучаемой акустической мощности к квадрату колебательной скорости) к внутреннему сопротивлению преобразователя приблизительно соответствовало 10. На практике преобразователи при интенсивности 3...10 Вт/см 2 имеют это отношение равным 0,65....0,85 .

Поэтому максимальная эффективность согласования преобразователя с обрабатываемой средой обеспечивается при использовании концентраторов с коэффициентом усиления, приблизительно равным 10 (точнее от 12 до 15).

Концентраторы представляют собой цилиндрические стержни переменного сечения, выполненные из металлов. По форме образующей концентраторы подразделяются на конусные, экспоненциальные, катеноидальные и ступенчатые . Внешний вид концентраторов, а также распределения амплитуд колебаний и механических напряжений показаны на рисунке 5.4.

Как следует из рисунка 5.4, наиболее выгодными в отношении возможности получения значительных амплитуд смещений при малой нагрузке являются ступенчатые концентраторы , у которых коэффициент усиления амплитуды равен отношению площадей входного и выходного сечений (т.е. квадрату отношения диаметров выходного и входного сечений). Но в отношении способности согласования преобразователя со средой такие концентраторы значительно уступают коническим, экспоненциальным и катеноидальным.



Рисунок 5.4 - Концентраторы ультразвуковых колебаний и распределения амплитуд А и механических напряжений F: а - конусный, б - экспоненциальный, в - катеноидальный, г – ступенчатый

УЗ колебательная система со ступенчатым концентратором характеризуется узкой полосой рабочих частот и, следовательно, очень ограниченной возможностью подстройки по частоте при изменениях нагрузки. Незначительные отклонения резонансной частоты колебательной системы от резонансной частоты ступенчатого концентратора приводят к резкому возрастанию входного сопротивления и, следовательно, к снижению эффективности всей колебательной системы.

Большие механические напряжения, возникающие в зоне перехода между участками различного диаметра при работе с амплитудами более 20 мкм, обуславливают сильный нагрев концентратора и, как следствие, значительные изменения частоты колебаний системы. Поэтому ступенчатые концентраторы не обладают достаточной прочностьюи срок их эксплуатации очень мал из-за появления усталостных трещин .

Перечисленные недостатки исключают возможность применения ступенчатых концентраторов в колебательных системах, обеспечивающих формирование высокоинтенсивных УЗ колебаний с амплитудой порядка 30...50 мкм и более.

Концентраторы конической, экспоненциальной и катеноидальной формы обеспечивают более благоприятные условия для передачи УЗ колебаний в нагрузку и для получения необходимых прочностных характеристик колебательных систем. Однако, коэффициенты усиления таких концентраторов не превышают отношения диаметров выходного и входного сечений. Поэтому, при значительных поверхностях выходного сечения (до 5 см 2 и более), и следовательно, рабочего инструмента, для получения достаточно высоких значений коэффициента усиления необходимы такие большие размеры входного сечения, которые практически предопределяют невозможность применения подобных концентраторов в многофункциональных аппаратах.

Более совершенными конструктивными формами обладают составные концентраторы . Особенно перспективными из них являются ступенчатые концентраторы с плавными экспоненциальными или радиальными переходами (рисунок 5.5).



Рисунок 5.5 - Составной ступенчато-экспоненциальный концентратор

Такие концентраторы позволяют при относительно небольших размерах входного сечения получать коэффициенты усиления, практически соответствующие коэффициентам усиления ступенчатого классического концентратора. Наличие переходного экспоненциального участка уменьшает концентрацию напряжений и обеспечивает более благоприятные условия для распространения УЗ колебаний, улучшает прочностные свойства концентраторов. Кроме того, наличие экспоненциального участка позволяет трансформировать нагрузку без существенного изменения резонансного режима УЗ колебательной системы.

Использование при проектировании ступенчатых концентраторов с плавными переходами теоретических соотношений, приведенных в работе , весьма трудоемко и требует громоздких вычислений. Поэтому обычно используется методика расчета, полученная в результате экспериментальных исследований исходных аналитических выражений в широкой области изменения размерных параметров концентраторов. В следующем подразделе показывается, как осуществляется практический расчет УЗ колебательных систем с рассмотренными ступенчатыми составными концентраторами.

    1. Малогабаритная ультразвуковая колебательная система для ручных инструментов

При создании ультразвуковых колебательных систем для многофункциональных аппаратов необходимо обеспечить увеличение амплитуды колебаний рабочего инструмента не менее чем в 10 раз с помощью концентратора и выполнить требования повышенной компактности. В этом случае, как отмечалось ранее, используются колебательные системы с четвертьволновыми преобразователем и концентратором. Недостатком таких систем является соединение преобразователя (пьезоэлектрического) с концентратором в плоскости наибольших механических напряжений. Этот недостаток устраняется в колебательной системе , выполненной в виде тела вращения, образованного двумя металлическими накладками, между которыми выше узла смещения ультразвуковой волны расположены пьезоэлектрические элементы.

Усиление амплитуды колебаний обеспечивается за счет того, что образующая тела вращения колебательной системы выполнена в виде непрерывной кривой, например катеноиды, экспоненты и пр., обеспечивающей концентрацию ультразвуковой энергии. При подведении электрического напряжения к электродам пьезоэлементов возникают механические колебания, которые усиливаются за счет выполнения накладок в виде непрерывной кривой, а затем передаются рабочему инструменту.

С точки зрения обеспечения оптимального согласования входного сопротивления активного элемента и сопротивления обрабатываемой среды необходимо выполнение образующих отражающей и излучающей рабочих накладок в форме тела вращения с образующей, выполненной в виде катеноиды. Коэффициент усиления при этом будет максимальным и может достигать значений, равных:

где: N = D/d , D - максимальный диаметр (диаметр отражающей накладки), d - минимальный диаметр (диаметр излучающей рабочей накладки на участке соединения с инструментом).

Для ультразвуковых колебательных систем, выполненных в форме тела вращения с экспоненциальной или конической образующей, коэффициент усиления будет еще меньше.

В рассматриваемой колебательной системе пьезоэлектрические элементы расположены, как отмечалось, выше узла смещения. Расстояние между ними и торцом колебательной системы выбирается таким, чтобы в области размещения пьезоэлементов динамические напряжения имели значения, не превышающие0,3 F max , что повышает надежность и стабильность системы в работе.

Рассмотрим, можно ли использовать рассмотренную колебательную систему для многофункциональных аппаратов технологического назначения.

Так, для получения коэффициента усиления K, равного 10, при диаметре торцевой поверхности излучающей рабочей накладки, равном 10 мм, согласно приведенной выше формуле необходимо использование тыльной накладки диаметром 90 мм. Такое значительное увеличение габаритов колебательной системы не только приводит к возникновению радиальных колебаний, существенно уменьшающих коэффициент усиления , но и практически не реализуемо вследствие отсутствия пьезоэлектрических элементов больших диаметров (более 70 мм) .

Поэтому предложена и разработана УЗ колебательная система в виде тела вращения из двух накладок и двух пьезоэлектрических элементов, расположенных между этими накладками, так что образующая тела вращения выполнена в виде непрерывной кусочно-гладкой кривой, состоящей из трех участков . Первый участок - цилиндрический длинойl 1 , второй - экспоненциальный длиной l z , третий - цилиндрический длинойl 2 .

Пьезоэлектрические элементы расположены между экспоненциальным участком и торцом отражающей накладки. Длины участков отвечают следующим условиям:

,


,


,

где с 1 , с 2 - скорости распространения ультразвуковых колебаний в материалах накладок, (м/с);

с - скорость распространения ультразвуковых колебаний в материале пьезоэлемента, (м/с);

/2 - рабочая частота колебательной системы, (Гц);

h - толщина пьезоэлемента, (м);

k 1 , k 2 - коэффициенты, выбираемые из условия обеспечения максимального (или требуемого) коэффициента усиления К при заданном N.

Рассматриваемая УЗ колебательная система схематично показана на рисунке 5.6. На этом же рисунке показано распределение амплитуд колебаний и механических напряжений F в системе при условии пренебрежения потерями и излучением энергии. Пучностям смещений приблизительно соответствуют узлы механических напряжений, и наоборот, т.е. распределение смещений и сил имеет вид стоячих волн .

УЗ колебательная система содержит корпус 1, в котором посредством крепежных элементов через опору 2 в узле смещений закреплена ультразвуковая колебательная система, состоящая из отражающей металлической накладки 3, пьезоэлектрических элементов 4, к электродам которых через соединительный кабель подается электрическое возбуждающее напряжение излучающей металлической накладки 5. К последней присоединен рабочий инструмент 6.

Образующая тела вращения, состоящего из накладок и пьезоэлементов колебательной системы, выполнена в виде непрерывной кусочно-гладкой кривой, содержащей три участка. Первый - цилиндрический - включает отражающую накладку 3 и пьезоэлементы 4. Второй (экспоненциальный) и третий (цилиндрический) участки представляют собой рабочую накладку 5.

Р
исунок 5.6 - Ультразвуковая колебательная система

Длины участков выбираются в соответствии с приведенными выше формулами.

Получение аналитических соотношений для практических расчетов при конструировании колебательных систем затруднено отсутствием ряда точных данных о распространении колебаний в стержнях переменного сечения из чередующихся различных материалов. Приблизительные расчеты требуют громоздких вычислений, таким образом, приведенные соотношения используются совместно с графическими зависимостями, полученными в результате практических исследований концентраторов с различными соотношениями параметров l 1 , l z , l 2 .

Полученные результаты, показывающие зависимость коэффициента усиления сложной ступенчато-экспоненциальной колебательной системы от коэффициентов k 1 и k 2 , определяющих длины входного и выходного участков, представлены на рисунке 5.7.

При условии равенства коэффициента сужения экспоненциального участка от диаметра D до d величине N, меньшей чем 3, максимальный коэффициент усиления системы обеспечивается при k 1 = k 2 =1,15....1,2 и по своему значению приближается к коэффициенту усиления ступенчатого концентратора. В случае N > 3 максимальный коэффициент усиления колебательной системы обеспечивается при поправочных коэффициентах k 1 и k 2 , равных 1,1, и не достигает на практике значений, соответствующих коэффициенту усиления ступенчатого концентратора. При N = 3 коэффициент усиления сложной ступенчато - экспоненциальной колебательной системы достигает 85% коэффициента усиления ступенчатого классического концентратора и падает при дальнейшем увеличении N.

Приведенные экспериментальные данные показывают, что максимальный коэффициент усиления рассматриваемой колебательной системы достигается при k 1 = k 2 = k и достаточно хорошо описывается формулой

РАБОТА № 3

Цель работы:

определение оптимальной формы и проведения расчетов параметров и геометрических размеров волноводов - концентраторов для ультразвуковой обработки материалов.

Теоретические положения

Марка материала

Диаметр входного торца волновода D (мм)

Диаметр выходного торца волновода d (мм)

Резонансная длинна L

Узловая плоскость Х 0

Коэффициент усиления К у

Резонансная частота (КГц)

Практическая часть:

Расчет ступенчатого волновода:

f - резонансная частота.

V - скорость звука.

X 0 = L/2; X 0 - положение узловой плоскости - место крепления волновода

K у = N 2 = (D/d) 2 , где D и d диаметр входного и выходного торцов волновода

Сталь: V= 5100

Титан: V= 5072

Решение:

L 1 = 5200/2*27=5100/54=94,4 (мм)

L 2 =5200/54=96,2 (мм)

L 3 =5072/54=93,9 (мм)

X 01 =94.4/2 =47,2 (мм)

X 02 =96,2/2 =48,1 (мм)

X 03 =93,9/2=46,9 (мм)

К у =(1,2) 2 =1,4

Вывод:

В данной работе мы ознакомились с ультразвуковым концентратором со ступенчатым волноводом. Сделали расчет волновода решением дифференциального уравнения,описывающего колебательный процесс при условии,что колебания носят гармонический характер. В процессе работ были найдены диаметры входного и выходного торцов волновода. От его диаметров зависит коэффициент усиления сигнала.

Работа №4

Волноводы – концентраторы - передатчики механической энергии ультразвуковой частоты в зону обработки материалов

Цель работы:

определение оптимальной формы и проведения расчетов параметров и геометрических размеров волноводов- концентраторов для ультразвуковой обработки материалов.

Теоретические положения

Ввод энергии ультразвуковых колебаний в обрабатываемый материал осуществляется комплексом волновод-инструмент. Механизмы взаимодействия с материалом рассматривается ниже, в следующем разделе. В настоящем разделе рассмотрены типовые методики расчета наиболее распространенных форм волноводов и разновидности инструментов, используемых при обработки сварных соединений.

Из ряда параметров, характеризующих свойство волноводов, важнейшими являются колебательная скорость, напряжение и мощность,которые инструмент способен передать в зону обработки. По упрощенной схеме, при заданном значении амплитуды колебательной скорости, расчет волновода сводится к определению его резонансной длинны, входной и выходной площади, и места его крепления.

Формула для расчета волноводов из решений дифференциального уравнения, описывающего колебательный процесс при условии, что колебания носят гармонический характер, фронт волны является плоским и распространяется волна только вдоль оси волновода без потерь.

Лабораторное оборудование и инструменты

При выполнении лабораторного практикума для ознакомления с оборудованием и более полного понимания принципа работы ультразвукового комплекта студентами, на стендах лаборатории имеется широкий выбор разнообразных волноводов (концентраторов), применяющихся с преобразователями различной формы и мощности.

Имеющиеся волноводы представляют группу из 4х наиболее распространенных форм и изготовлены из акустически проницаемых и обладающих необходимыми прочностными характеристиками материалов.

Для удобства восприятия материала, волноводы выполнены с закрепленным на нем рабочим инструментом - наконечником и без него.

Практическая часть:

Расчет конического волновода

L= λ /2 * kl/ , где kl- корни уравнения

tgkl = kl/1 + (kl) 2 N(1-N) 2

2П / λ = k – волновое число

X 0 = 1/k * arctg(kl/a), где a = 1/N-1

K у = √1+ (2П * 1/λ) 2

Решение:

l = 94, 4; λ = 94, 4 * 2= 188, 8

K = 2 * 3, 14 / 188, 8 = 0, 03

Kl = 0, 03 * 94, 4 = 2, 8

tgkl = 2,8 / 1+ (2,8) 2 * 1,2(1-1,2) 2 = 2

а = 1/1,2-1 = 5

Х 0 = 1/0,03 * arctg (2,8/5) = 0,3

К у = √1 + (2*3,14* 1/188,8) 2 = 1

Вывод:

В данной работе мы ознакомились с ультразвуковым концентратором с коническим волноводом. Сделали расчет волновода решением дифференциального уравнения, описывающего колебательный процесс при условии, что колебания носят гармонический характер. В процессе работ были найдены диаметры входного и выходного торцов волновода. От его диаметров зависит коэффициент усиления сигнала.

Данные волноводы широко используются для обработки металлических конструкций в местах сварных соединений, поэтому очень важно правильно рассчитать параметры инструмента для передачи нужной частоты сигнала.

Для расчета ультразвукового трансформатора скорости, роль которого в рассматриваемой схеме выполняет ступенчатый концентратор, воспользуемся общей формой уравнения продольных колебаний (2.1). Поскольку и в данном случае справедливо допущение о том, что концентратор имеет собственную частоту и осуществляет гармонические колебания, решение уравнения (2.1) можно представить в виде

Аналогично для цилиндра, эквивалентного по массе алмазной выглаживающей головки с элементами крепления к концентратору колебаний, можно записать

, (2.18)

где с 4 - скорость звука в материале цилиндра, эквивалентного по массе выглаживающему инструменту с элементами крепления.

Граничные условия для колебательной системы с началом координат в точке O 2 могут быть записаны как


При ; (2.19)

при ; (2.20)

при , (2.21)

где E 4 - модуль упругости на растяжение материала конструктивного элемента выглаживающей головки; S 3 и S 4 - площади поперечного сечения малой по диаметру ступни концентратора и эквивалентного цилиндра соответственно; a 2 - длина ступени малого диаметра концентратора; b - высота эквивалентного цилиндра.

При условии (2.19) из уравнения (2.17) получаем

;

. (2.22)

Учитывая первую часть условия (2.20), из уравнений (2.17) и (2.18) получим

Вторая часть условия (2.20) может быть преобразована к виду

. (2.24)


Длину ступени большего диаметра концентратора определим из выражения (2.27), учитывая, что, вследствие отсутствия на конце ступенчатого концентратора нагрузки в виде алмазной выглаживающей головки с элементами крепления, и :

. (2.28)

Для трансформатора скорости с 1/2 - волновой акустической системой, когда длина одной ступени равняется 1/4 и , имеем

Для цилиндра, эквивалентного по массе выглаживающей головке с элементами крепления, можно записать

. (2.30)

. (2.31)

б) 3/4 - волновой ультразвуковой вибрационный привод

Колебательная система такого привода имеет одну возможную точку крепления, что позволяет уменьшить длину привода на 1/4 акустической волны . Для возможности жесткого крепления пьезоэлектрический составной преобразователь в такой схеме обычно выполняют несимметричным (рис.2.3). При этом ступень меньшего диаметра трансформатора скорости с инструментом выглаживания присоединяют непосредственно к пучности колебаний, которая находиться на торце составного преобразователя. Поэтому эту ступень следует рассматривать в качестве нагрузки пьезоэлектрического преобразователя, что соответственно накладывает особенности на расчет одной из его частотопонижающих накладок.

Для случая гармонических колебаний привода в соответствии с расчетной схемой (рис.2.3) решение общего уравнения (2.1) продольных колебаний можно записать в виде

, (2.32)

. (2.33)

Граничные условия в соответствии расчетной схемой можно представить как

При монтаже проволочных выводов в СПП для силовой электроники в основном применяется УЗС. Основными параметрами процесса при этом методе микросварки являются: амплитуда колебаний рабочего торца инструмента, которая зависит от электрической мощности преобразователя и конструктивного исполнения колебательной системы; усилие сжатия свариваемых элементов; длительность включения ультразвуковых колебаний (время сварки).

Сущность метода УЗС заключается в возникновении трения на поверхности раздела соединяемыми элементами, в результате чего происходит разрушение оксидных и адсорбированных пленок, образование физического контакта и развитие очагов схватывания между соединяемыми деталями.

Ультразвуковой концентратор является одним из основных элементов колебательных систем микросварочных установок. Концентраторы выполняются в виде стержневых систем с плавно меняющимся сечением, т. к. площадь излучения преобразователя всегда значительно больше площади сварного соединения. Большим, входным, сечением концентратор присоединяется к преобразователю, а к меньшему, выходному, сечению крепится ультразвуковой инструмент. Назначение концентратора – это передача ультразвуковых колебаний от преобразователя в ультразвуковой инструмент с наименьшими потерями и наибольшей эффективностью.

В ультразвуковой технике известно большое количество типов концентраторов. Наибольшее распространение получили следующие: ступенчатый, экспоненциальный, конический, катеноидальный и концентратор типа «цилиндр-катеноида». В колебательных системах установок часто используются конические концентраторы. Это объясняется тем, что они просты в расчете и изготовлении. Однако из пяти вышеперечисленных концентраторов конический обладает наибольшими потерями из-за внутреннего трения, рассеивает наибольшую мощность, а следовательно, больше нагревается. Наилучшей устойчивостью обладают концентраторы с наименьшим значением отношения входного и выходного диаметров для одинакового коэффициента усиления K y . Желательно также, чтобы "полуволновая" длина его была наименьшей. Для целей микросварки обычно применяют концентраторы с 2

Материал концентратора должен обладать высокой усталостной прочностью, малыми потерями, хорошо паяться твердыми припоями, легко обрабатываться и быть сравнительно недорогим.

Расчет ультразвукового концентратора сводится к определению его длины, входных и выходных сечений, формы профиля его боковых поверхностей. При расчете вводят следующие допущения: а) вдоль концентратора распространяется плоская волна; б) колебания носят гармонический характер; в) концентратор колеблется только вдоль осевой линии; г) механические потери в концентраторе невелики и линейно зависят от амплитуды колебаний (деформации).

Теоретический коэффициент усиления К у амплитуды колебаний экспоненциального концентратора определяется из выражения

где D 0 и D 1 – соответственно диаметры входного и выходного сечений концентратора, мм; N – отношение диаметра входного сечения концентратора к выходному.

Длина концентратора рассчитывается по формуле

(2)

где с – скорость распространения ультразвуковых колебаний в материале концентратора, мм/с; f – рабочая частота, Гц.

Положение узловой плоскости х 0 (места крепления волновода) выражается соотношением

(3)

Форма образующей профиля катеноидальной части концентратора рассчитывается по уравнению

(4)

где – коэффициент формы образующей; х – текущая координата по длине концентратора, мм.

В данной работе разработана компьютерная программа для расчета параметров пяти типов ультразвуковых концентраторов: экспоненциального, ступенчатого, конического, катеноидального и концентратора «цилиндр-катеноида», реализованная на языке Паскаль (компилятор Turbo-Pascal-8.0). Исходными данными для расчетов являются: диаметры входного и выходного сечений (D 0 и D 1 ), рабочая частота (f ) и скорость распространения ультразвуковых колебаний в материале концентратора (с). Программа позволяет рассчитать длину, положение узловой плоскости, коэффициент усиления, а также для экспоненциального, катеноидального и концентратора «цилиндр-катеноида» форму образующей с заданным шагом. Структурная схема алгоритма для расчета экспоненциального концентратора представлена на рис. 6.9.

Пример расчета. Рассчитать параметры полуволнового экспоненциального концентратора, если заданы рабочая частота f = 66 кГц; диаметр входного сечения D 0 = 18 мм, выходного D 1 =6 мм; материал концентратора – сталь 30ХГСА (скорость ультразвука в материале с = 5,2·10 6 мм/с).

По формуле (1) определяем коэффициент усиления концентратора .

Рис. 6.9. Структурная схема алгоритма расчета экспоненциального концентратора

В соответствии с выражениями (2) и (3) длина концентратора , положение узловой плоскости мм.

Уравнение (4) для расчета формы профиля концентратора приобретает после подстановок следующий вид:

Расчеты с помощью компьютерной программы профиля образующей экспоненциального концентратора с шагом по параметру х , равным 5 мм, приведены в табл. 6.1. По данным табл. 6.1 конструируется профиль концентратора.

Табл. 6.1. Данные расчета профиля концентратора

х, мм
D х, мм 15,7 13,8 10,6 9,3 8,2 7,2 6,3

В табл. 6.2 приведены результаты расчетов параметров различных типов ультразвуковых концентраторов из стали 30ХГСА (при D 0 = 18 мм; D 1 = 6 мм; f = 66 кГц).

Табл. 6.2. Параметры УЗ концентраторов

* l 1 и l 2 – соответственно длина цилиндрической и катеноидальной части концентратора.