Без релейные схемы плавного пуска блока питания. Устройство мягкого включения умзч. Схема с транзисторным ключом

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2) * Площадь сечения (см 2)
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * (1 + R2/R1)

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности , схемы термоконтроля, вентиляторы, подсветка;
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD : Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать - (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

М. СИРАЗЕТДИНОВ,г. Уфа
Радио, 2000 год, №9

При сборке мощных УНЧ всегда встает вопрос о защите от импульсных перегрузок в момент включения . Как правило выходной каскад любого мощного усилителя питается от двухполярного источника в котором устанавливаются конденсаторы очень большой емкости (до 10 000 мкФ а порою и выше). При включении блока питания через них начинает протекать очень большой зарядный ток что создает значительную нагрузку на сам источник питания, да и для выходного каскада это тоже не сильно-то хорошо...

Выход из положения- так называемый "мягкий" запуск: плавная подача сетевого напряжения на сетевой трансформатор. В литературе рассматривалось достаточно много устройств и здесь представлено очередное из них.

Главная его отличительная особенность заключается в том что что здесь нарастание сетевого напряжения происходит действительно плавно, а не ступенчато как во многих подобных устройствах.

Схема устройства для мягкого включения УНЧ

Принципиальная схема устройства "мягкого" включения питания УМЗЧ показана на рисунке. Транзистор VT1 через диодный мост VD1-VD4 включен последовательно с первичной обмоткой трансформатора Т1 блока питания. Выбор полевого транзистора МОП-структуры с изолированным затвором обусловлен высоким входным сопротивлением его управляющей цепи, что позволяет уменьшить потребляемую мощность.

Узел управления состоит из цепей, формирующих напряжение на затворе транзистора VT1, и электронного ключа на транзисторах VT2, VT3. Первая цепь образована элементами VD5, C1, R1 - R3, VD7, С4, устанавливающими начальное напряжение на затворе транзистора VT1. Во вторую - входят элементы VD8, R4, R5, С2, СЗ, обеспечивающие плавное нарастание напряжения на затворе транзистора VT1. Стабилитрон VD6 ограничивает напряжение на затворе транзистора VT1 и защищает его от пробоя.

В исходном состоянии конденсаторы цепей узла управления разряжены, поэтому в момент замыкания контактов выключателя сетевого питания SB1 напряжение на затворе транзистора VT1 относительно его истока равно нулю и ток цепи исток-сток отсутствует. Это означает, что ток в первичной обмотке трансформатора Т1 и падение напряжения на ней также равны нулю. С приходом первого положительного полупериода сетевого напряжения конденсатор С1 начинает заряжатьсячерез цепь VD5, VD3 и в течение этого полупериода заряжается до амплитудного значения сетевого напряжения.

Стабилитрон VD7 стабилизирует напряжение на делителе R2R3. Напряжение на нижнем по схеме плече подстро-ечного резистора R3 определяет начальное напряжение затвор-исток транзистора VT1, которое устанавливается близким к пороговому значению 2...4 В. Через несколько периодов сетевого напряжения импульсы тока, протекающие через конденсатор С2, зарядят его до напряжения, превышающего напряжение отсечки транзистора VT3.

Электронный ключ на транзисторах VT2, VT3 закрывается, и конденсатор СЗ начинает заряжаться через цепь VD8, R4, R5, R3, VD3. Напряжение затвор-исток транзистора VT1 определяется в это время суммой напряжения на нижнем плече резистора R3 и плавно возрастающего напряжения на конденсаторе СЗ. По мере роста этого напряжения транзистор VT1 открывается и сопротивление его канала исток-сток становится минимальным. Соответственно напряжение на первичной обмотке трансформатора Т1 плавно увеличивается почти до величины сетевого напряжения. Дальнейший рост напряжения затвор-исток транзистора VT1 ограничивается стабилитроном VD6. В установившемся режиме падение напряжения на диодах моста VD1-VD4 и транзисторе VT1 не превышает 2...3 Вт, так что на дальнейшую работу блока питания УМЗЧ это практически не влияет. Длительность наиболее тяжелого режима работы транзистора VT1 не превышает 2...4 с, поэтому рассеиваемая им мощность невелика. Конденсатор С4 устраняет пульсации напряжения на переходе затвор-исток транзистора VT1. создаваемые импульсами зарядного тока конденсатора СЗ на нижнем плече резистора R3.

Электронный ключ на транзисторах VT2, VT3 быстро разряжает конденсатор СЗ после выключения блока питания УМЗЧ или при кратковременных перебоях в сети питания и подготавливает узел управления к повторному включению.

В авторском варианте устройства защиты использован импортный конденсатор производства фирмы Gloria (С1), а также отечественные: К53-1 (С2, С4) и К52-1 (СЗ). Все постоянные резисторы - МЛТ, подстроечный резистор R3 - СП5-3. Транзистор КП707В (VT1) может быть заменен на другой, например. КП809Д. Важно, чтобы сопротивление его канала в открытом состоянии было минимальным, а предельное напряжение исток-сток составляло не менее 350 В. Вместо транзистора КТ3102Б (VT2) допустимо использовать КТ3102В и КТ3102Д, а вместо КП103И(VTЗ)-КП103Ж.

Транзистор VT1 снабжен небольшим теплоотводом площадью 10...50см 2 .

Настройка устройства заключается в подборе оптимального положения движка подстроечного резистора R3. Первоначально его устанавливают в нижнее (по схеме) положение и через высокоомный делитель подключают к первичной обмотке трансформатора

Т1 осциллограф. Затем замыкают контакты выключателя SB1 и, перемещая движок резистора R3. наблюдают за процессом нарастания амплитуды напряжения на первичной обмотке трансформатора. Движок оставляют в таком положении, при котором временной интервал между включением SB1 и началом нарастания амплитуды напряжения на обмотке Т1 минимален. При необходимости следует подобрать емкость конденсатора СЗ.

Устройство испытывалось с макетом УМЗЧ, близким по структуре к усилителю, описанному в статье А. Орлова "УМЗЧ с однокаскадным усилением напряжения" (см. "Радио". 1997, № 12, с. 14 - 16). Выброс напряжения на выходе УМЗЧ при включении блока питания не превышал 1.5 В

Эти две схемы устройства мощности с тороидальным трансформатором. Обычно стартовый (пусковой) ток очень высок в ​​течение непродолжительного периода пока заряжаются сглаживающие конденсаторы. Это своеобразный стресс для конденсаторов, диодов выпрямителя и самого трансформатора. Также в такой момент может перегореть и предохранитель.

Схема плавного пуска предназначена для того чтобы ограничить пусковой ток до приемлемого уровня. Это достигается путем подключения трансформатора к питающей сети через резистор, который подключается на короткое время с помощью реле.

Схемы объединяют в себе плавный пуск и кнопочное управление, таким образом, получается готовый модуль, который можно использовать в усилителях мощности или совместно с иными электроприборами.

Описание схем плавного пуска

Первая схема построена на микросхемах КМОП-логики (4027), а вторая на интегральной микросхеме NE556, которая представляет собой 2 объединенных в одном корпусе.

Что касается первой схемы, то она использует JK-триггер подключенный как T-триггера.

Т-триггер — это счетный триггер. Т-триггер имеет один счетный (тактирующий) вход и один синхронизирующий.

При нажатии кнопки J2 состояние триггера изменяется. При переходе от выключенного состояния во включенное состояние сигнал передается через резистор и конденсатор на вторую часть схемы. Там второй JK-триггер подключен необычным способом: на вывод сброса подан высокий уровень, а вывод SET используется в качестве входа.

В таблице истинности можно обнаружить, что когда на вывод сброса подан высокий уровень, все другие входы игнорируются, за исключением вывода SET. Когда на выводе SET высокий уровень на выходе так же высокий и на оборот.

Резистор R6 и конденсатор С6 используются для задержки сигнала в момент включения. При тех значениях, которые указаны на схеме, задержка составляет 1 секунду. При необходимости меня параметры R6 и С6 можно изменить время задержки. Диод VD2 шунтирует резистор R6, вследствие чего при выключении реле отключается без задержек.

Вторая схема использует сдвоенный таймер NE556. Первый таймер используется как кнопочный выключатель, а второй как выключатель, связанный с задержкой созданной элементами R5, VD2 и C6.

Резисторы R8 — R10 имеют сопротивление 150 Ом и мощность 10Вт. Они соединены параллельно в результате получается резистор на 50 Ом и мощностью 30 Вт. На печатной плате два из них располагаются рядом, а третий находится в середине поверх них. Мощность трансформатора Tр1 около 5 Вт с напряжением во вторичной обмотке 12-15 В. Разъем J1 используется, если понадобится питание 12 вольт для других внешних устройств.

Реле K1 и K2 на 12В контактные группы которых должны быть рассчитаны на коммутацию 220 В / 16A. Номинал предохранителя F1 должен выбираться в соответствии с устройством, которое будет подключено к модулю плавного пуска.

Обе схемы были протестированы на макетной плате и обе работали, но вторая схема подвержена помехам — если провод, идущий к кнопке, достаточно длинный, что в свою очередь приводит к ложному переключению.

Большинство резисторов, конденсаторов и диодов — SMD. В последнее время я использую все больше и больше SMD элементов в конструкциях, потому что нет необходимости сверлить отверстия. Если вы решите использовать любую из этих двух печатных плат, проверьте их тщательно, потому что они не проверялись.

(unknown, скачано: 1 192)

Схема плавного пуска обеспечивает задержку около 2-х секунд, что позволяет плавно зарядить конденсаторы большей емкости без скачков напряжения и моргания лампочки дома. Ток заряда ограничен величиной: I=220/R5+R6+Rt.
где Rt - сопротивление первичной обмотки трансформатора постоянному току, Ом.
Сопротивление резисторов R5, R6 можно принимать от 15 Ом до 33 Ом. Меньше - не эффективно, а больше - увеличивается нагрев резисторов. С номиналами указанными на схеме, максимальный пусковой ток будет ограничен, приблизительно: I=220/44+(3...8)=4.2...4.2А.

Основные вопросы возникающие у новичков при сборке:

1. На какое напряжение ставить электролиты?
Напряжение электролитов указано на печатной плате - это 16 и 25В.

2. На какое напряжение ставить не полярный конденсатор?
Напряжение его так же указано на печатной плате - это 630В (допускается 400В).

3. Какие транзисторы можно применить вместо BD875?
КТ972 с любым буквенным индексом или BDX53.

4. Можно ли применять вместо BD875 не составной транзистор?
Можно, но лучше поискать именно составной транзистор.

5. Какое реле необходимо применять?
Реле должно иметь катушку на 12В с током не более 40мА, а лучше 30мА. Контакты должны быть рассчитаны на ток не менее 5А.

6. Как увеличить время задержки?
Для этого необходимо увеличить емкость конденсатора С3.

7. Можно ли применять реле с другим напряжением катушки, например 24В?
Нельзя, схема работать не будет.

8. Собрал - не работает
Значит это твоя ошибка. Схема собранная на исправных деталях начинает работать сразу и не требует настройки и подбора элементов.

9. На плате есть предохранитель, на какой ток его применять?
Ток предохранителя я рекомендую рассчитывать так: Iп=(Pбп/220)*1.5. Полученное значение округляем в сторону ближайшего номинала предохранителя.

Обсуждение статьи на форуме:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

BDX53

1 КТ972, BD875 В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VD1 Стабилитрон

1N5359B

1 24 В В блокнот
VD2 Выпрямительный диод

1N4148

1 В блокнот
C1 Конденсатор 470 нФ 1 Не менее 400 В В блокнот
C2, C3 Электролитический конденсатор 220 мкФ 2 25 В В блокнот
R1 Резистор

82 кОм

1 В блокнот
R2 Резистор

220 Ом

1 2 Вт В блокнот
R3 Резистор

62 кОм

1 В блокнот
R4 Резистор

6.8 кОм

1 В блокнот
R5, R6 Резистор

При конструировании блоков питания усилителей часто возникают проблемы, никак не связанные с самим усилителем, или являющиеся следствием применённой элементной базы. Так в блоках питания транзисторных усилителей большой мощности часто возникает проблема реализовать плавное включение блока питания, то есть обеспечить медленный заряд электролитических конденсаторов в сглаживающем фильтре, которые могут иметь весьма значительную ёмкость и, без принятия соответствующих мер, в моменты включения просто выведут из строя диоды выпрямителя.

В блоках питания ламповых усилителей любой мощности необходимо обеспечить задержку подачи высокого анодного напряжения до прогрева ламп, чтобы избежать преждевременного обеднения катода и как следствие существенного сокращения ресурса лампы. Конечно, при использовании кенотронного выпрямителя эта проблема решается сама собой. Но в случае использования обычного мостового выпрямителя с LC-фильтром, без дополнительного устройства не обойтись.

Обе вышеизложенные проблемы позволяет решить простое устройство, которое может быть легко встроено как в транзисторный, так и в ламповый усилитель.

Схема устройства.

Принципиальная схема устройства плавного включения представлена на рисунке:

Увеличение по клику

Переменное напряжение на вторичной обмотке трансформатора ТР1 выпрямляется диодным мостом Br1 и стабилизируется интегральным стабилизатором VR1. Резистор R1 обеспечивает плавный заряд конденсатора C3. Когда напряжение на нём достигнет пороговой величины, откроется транзистор Т1, в результате чего сработает реле Rel1. Резистор R2 обеспечивает разряд конденсатора C3 при выключении устройства.

Варианты включения.

Контактная группа реле Rel1 подключается в зависимости от типа усилителя и организации блока питания.

Для примера, чтобы обеспечить плавный заряд конденсаторов в блоке питания транзисторного усилителя мощности , представленное устройство можно использовать для шунтирования балластного резистора после заряда конденсаторов, чтобы исключить потери мощности на нём. Возможный вариант включения показан на схеме:

Номиналы предохранителя и балластного резистора не указаны, так как выбираются, исходя из мощности усилителя и ёмкости конденсаторов сглаживающего фильтра.

В ламповом усилителе представленное устройство поможет организовать задержку подачи высокого анодного напряжения до прогрева ламп, что позволяет существенно продлить их ресурс работы. Возможный вариант включения представлен на рисунке:

Схема задержки здесь включается одновременно с накальным трансформатором. После прогрева ламп включится реле Rel1, в результате чего сетевое напряжение будет подано на анодный трансформатор.

Если в вашем усилителе используется один трансформатор и для питания цепей накала ламп, и для анодного напряжения, тогда контактную группу реле следует перенести в цепь вторичной обмотки анодного напряжения .

Элементы схемы задержки включения (плавного пуска):

  • Предохранитель: 220В 100мА,
  • Трансформатор: любой маломощный с выходным напряжением 12-14В,
  • Диодный мост: любой малогабаритный с параметрами 35В/1А и выше,
  • Конденсаторы: С1 — 1000мкФ 35В, С2 — 100нФ 63В, С3 — 100мкФ 25В,
  • Резисторы: R1 — 220кОм, R2- 120 кОм,
  • Транзистор: IRF510,
  • Интегральный стабилизатор: 7809, LM7809, L7809, MC7809 (7812),
  • Реле: с рабочим напряжением обмотки 9В (12В для 7812) и контактной группой соответствующей мощности.

Из-за малого тока потребления микросхему стабилизатора и полевой транзистор можно монтировать без радиаторов.

Однако у кого-то может возникнуть идея отказаться от лишнего, пусть и малогабаритного, трансформатора и запитать схему задержки от напряжения накала. Учитывая, что стандартное значение напряжения накала ~6.3В, придётся заменить стабилизатор L7809 на L7805 и применить реле с рабочим напряжением обмотки 5В. Такие реле обычно потребляют значительный ток, в этом случае микросхему и транзистор придётся снабдить небольшими радиаторами.

При использовании реле с обмоткой на 12В (как-то чаще встречаются) микросхему интегрального стабилизатора следует заменить на 7812 (L7812, LM7812, MC7812).

С указанными на схеме номиналами резистора R1 и конденсатора С3 время задержки включения составляет порядка 20 секунд . Для увеличения временного интервала необходимо увеличить ёмкость конденсатора С3.

Статья подготовлена по материалам журнала «АудиоИкспресс»

Вольный перевод Главного редактора «РадиоГазеты».