Лабораторные методы определения скорости света. Астрономические методы определения скорости света. Построение изображения в сферическом зеркале

Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.

Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c . Скорость света равняется приблизительно 300 000 000 м/с.

Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.


Так, Декарт , Кеплер и Ферма были того же мнения, что и ученые античности. А вот считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.

Опыт Галилея

Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете заказать эссе , оформив заявку на сайте.


Опыты Рёмера и Брэдли

Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера . Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.


Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.

Опыт Физо

К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.


Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.

С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.


Самое точное значение скорости света

Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду , полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра . Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.

Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. Заказать контрольную работу онлайн вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!

Экспериментальные методы определения скорости света

Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины с постоянно увеличивается. В данной таблице дан неполный перечень экспериментальных работ по определению скорости света.

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

Эксперимента

погрешность,

Вебер-Кольрауш

Максвелл

Майкельсон

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Затмение спутника юпитера

Аберрация света

Движущиеся тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

Первое удачное измерение скорости света относится к 1676 г. Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера. Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Рис. 1. Метод Ремера. С - Солнце, Ю - Юпитер, З - Земля

За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин. Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.). Скорость света, измеренная Рёмером, была равна: c= 214300 км/с.

По истечение еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее - когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+r)/с, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера.

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4r/с, поэтому с=4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение:

Этот результат был первым измерением скорости света. Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Рис. 2

Определение скорости света по наблюдению аберрации в 1725-1728 гг. Брадлей предпринял наблюдение с целью выяснить, существует ли годичный параллакс звезд, т.е. кажущееся смещение звезд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды.

Брадлей действительно обнаружил подобное смещение. Он объяснил наблюдаемое явление, названное им аберрацией света, конечной величиной скорости распространения света и использовал его для определения этой скорости.

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c. У него получилось значение скорости света равной 308000 км/с. Важно заметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается неизменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

Рис 3 . Схема опыта по определению скорости света методом зубчатого колеса

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Скорость света и методы ее определения

План

Введение

1. Астрономические методы измерения скорости света

1.1 Метод Рёмера

1.2 Метод аберрации света

1.3 Метод прерываний (метод Физо)

1.4 Метод вращающегося зеркала (метод Фуко)

1.5 Метод Майкельсона

Введение

Скорость света - одна из наиболее важных физических констант, которые называют фундаментальными. Эта константа имеет особое значение как в теоретической, так и в экспериментальной физике и смежных с нею науках. Точное значение скорости света требуется знать в радио- и светолокации, при измерении расстояний от Земли до других планет, управлении спутниками и космическими кораблями. Определение скорости света наиболее важно для оптики, в частности, для оптики движущихся сред, и физики вообще. Познакомимся с методами определения скорости света.

1. Астрономические методы измерения скорости света

1.1 Метод Рёмера

Первые измерения скорости света были основаны на астрономических наблюдениях. Достоверное значение скорости света, близкое к современному ее значению, было получено впервые Рёмером в 1676 году при наблюдении затмений спутников планеты Юпитер.

Время прохождения светового сигнала от небесного светила до Земли зависит от дальности L расположения светила. Явление, происходящее на каком-то небесном теле, наблюдается с запаздыванием, равным времени прохождения света от светила до Земли:

где с - скорость света.

Если наблюдать какой-либо периодический процесс, происходящий в удаленной от Земли системе, то при неизменном расстоянии между Землей и системой наличие этого запаздывания не будет влиять на период наблюдаемого процесса. Если же за время периода Земля удалится от системы или приблизится к ней, то в первом случае окончание периода будет зарегистрировано с большим запаздыванием, чем его начало, что приведет к кажущемуся увеличению периода. Во втором случае, наоборот, окончание периода будет зафиксировано с меньшим запаздыванием, чем его начало, что приведет к кажущемуся уменьшению периода. В обоих случаях кажущееся изменение периода равно отношению разности расстояний между землей и системой в начале и конце периода к скорости света.

Изложенные соображения лежат в основе метода Рёмера.

Рёмер проводил наблюдения за спутником Ио, период обращения которого 42 ч 27 мин 33 с.

При движении Земли по участку орбиты Е 1 Е 2 Е 3 она удаляется от Юпитера и должно наблюдаться увеличение периода. При движении по участку Е 3 Е 4 Е 1 наблюдаемый период будет меньше истинного. Так как изменение одного периода мало (около 15 с), то эффект обнаруживается только при большом числе наблюдений, проводимых в течение длительного промежутка времени. Если например, наблюдать затмения в течение полугода, начиная с момента противостояния Земли (точка Е 1 ) до момента "соединения" (точка Е 3 ), то промежуток времени между первым и последним затмениями будет на 1320 с больше вычисленного теоретически. Теоретический расчет периода затмений проводился в точках орбиты, близких к противостоянию. Где расстояние между Землей и Юпитером практически не изменяется со временем.

Полученное расхождение можно объяснить только тем, что в течение полугода Земля перешла из точки Е 1 в точку Е 3 и свету приходится в конце полугодия проходить путь, больший, чем в начале, на величину отрезка Е 1 Е 3 , равного диаметру земной орбиты. Таким образом, незаметные для отдельного периода запаздывания накапливаются и образуют результирующее запаздывание. Величина запаздывания, определенная Рёмером, составляла 22 мин. Принимая диаметр орбиты Земли равным км, можно получить для скорости света значение 226000 км/с.

Значение скорости света, определенное на основании измерений Рёмера, оказалось меньше современного значения. Позже были выполнены более точные наблюдения затмений, в которых время запаздывания оказалось равным 16,5 мин, что соответствует скорости света 301000 км/с.

1.2 Метод аберрации света

свет скорость измерение астрономический

Для земного наблюдателя направление луча зрения на звезду будет неодинаковым, если это направление определять в разные времена года, то есть в зависимости от положения Земли на ее орбите. Если направление на какую-либо звезду определять с полугодовыми промежутками, то есть при положениях Земли на противоположных концах диаметра земной орбиты, то угол между полученными двумя направлениями называют годичным параллаксом (рис. .2). Чем дальше находится звезда, тем меньше ее параллактический угол. Измеряя параллактические углы различных звезд, можно определить расстояние этих звезд до нашей планеты.

В 1725-1728 гг. Брэдли (Bradley) Джеймс, английский астроном, измерил годичный параллакс неподвижных звезд. Наблюдая за одной из звезд в созвездии Дракона, он обнаружил, что ее положение менялось в течение года. За это время она описала небольшую окружность, угловые размеры которой были равны 40,9”. В общем случае в результате движения Земли по орбиту звезда описывает эллипс, большая ось которого имеет те же угловые размеры. Для звезд, лежащих в плоскости эклиптики, эллипс вырождается в прямую, а для звезд, лежащих у полюса - в окружность. (Эклиптикой называется большой круг небесной сферы, по которому происходит видимое годичное движение Солнца.)

Величина смещения, измеренная Брэдли, оказалась значительно больше ожидаемого параллактического смещения. Брэдли назвал это явление аберрацией света и объяснил его конечностью скорости света. За то короткое время, в течение которого свет, упавший на объектив телескопа, распространяется от объектива до окуляра, окуляр в результате движения Земли по орбите сдвигается на очень малый отрезок (рис. .3). Вследствие этого изображение звезды сместится на отрезок а . Направляя вновь телескоп на звезду, его придется несколько наклонить в направлении движения Земли, чтобы изображение звезды опять совпало с центром перекрестия нитей в окуляре.

Пусть угол наклона телескопа равен б. Обозначим время, необходимое свету для прохождения отрезка в , равного расстоянию от объектива телескопа до его окуляра, равно ф. Тогда отрезок, и

Из измерений Брэдли было известно, что при двух положениях Земли, лежащих на одном диаметре орбиты, звезда кажется смещенной от истинного положения на один и тот же угол. Угол между этими направлениями наблюдения, откуда, зная скорость Земли на орбите, можно найти скорость света. Брэдли получил с = 306000 км/с.

Следует отметить, что явление аберрации света связано с изменением направления скорости Земли в течение года. Объяснение этого явления базируется на корпускулярных представлениях о свете. Рассмотрение аберрации света с позиций волновой теории более сложно и связано с вопросом о влиянии движения Земли на распространение света.

Рёмером и Брэдли было показано, что скорость света конечна, хотя и имеет огромное значение. Для дальнейшего развития теории света важно было установить, от каких параметров зависит скорость света и как она изменяется при переходе света из одной среды в другую. Для этого необходимо было разработать методы измерения скорости света земных источников. Первые попытки таких экспериментов были предприняты в начале XIX века.

1.3 Метод прерываний (метод Физо)

Первый экспериментальный метод определения скорости света земных источников был разработан в 1449 г. французским физиком Арманом Ипполитом Луи Физо. Схема опыта представлена на рис. .4.

Свет, распространяющийся от источника s , частично отражается от полупрозрачной пластинки Р и направляется к зеркалу М . На пути луча располагается прерыватель света - зубчатое колесо К , ось которого ОО" параллельна лучу. Лучи света проходят через промежутки между зубьями, отражаются зеркалом М и направляются обратно через зубчатое колесо и пластинку Р к наблюдателю.

При медленном вращении колеса К свет, пройдя через промежуток между зубьями, успевает возвратиться через тот же промежуток и попадает в глаз наблюдателя. В те моменты, когда путь лучей пересекается зубцом, свет не попадает к наблюдателю. Таким образом, при малой угловой скорости наблюдатель воспринимает мелькающий свет. Если увеличить скорость вращения колеса, то при некотором значении свет, прошедший через один промежуток между зубьями, дойдя до зеркала и вернувшись обратно, не попадет в тот же самый промежуток d , а будут перекрыт зубцом, занявшим к этому моменту положение промежутка d . Следовательно, при угловой скорости в глаз наблюдателя свет совсем не будет попадать ни от промежутка d , ни от всех последующих (первое затемнение). Если взять число зубцов п , то время поворота колеса на ползубца равно

Время прохождения светом расстояния от колеса до зеркала М и обратно равно

где l - расстояние до колеса от зеркала (база). Приравнивая эти два интервала времени, получаем условие, при котором наступает первое затемнение:

откуда можно определить скорость света:

где - число оборотов в секунду.

В установке Физо база составляла 8,63 км, число зубцов в колесе 720 и первое затемнение наступило при частоте 12,6 об/с. Если увеличить скорость колеса вдвое, то будет наблюдаться просветленное поле зрения, при утроенной скорости вращения опять наступит затемнение и т.д. Вычисленное Физо значение скорости света 313300 км/с.

Основная трудность таких измерений заключается в точном установлении момента затемнения. Точность повышается как при увеличении базы, так и при скоростях прерываний, позволяющих наблюдать затемнения высших порядков. Так, Перротен в 1902 году провел измерения при длине базы 46 км и получил значение скорости света 29987050 км/с. Работа проводилась в условиях чрезвычайно чистого морского воздуха с использованием высококачественной оптики.

Вместо вращающегося колеса можно применять другие, более совершенные методы прерывания света, например, ячейку Керра, с использованием которой можно прерывать световой пучок 107 раз в секунду. При этом можно существенно сократить базу. Так, в установке Андерсона (1941 г.) с ячейкой Керра и фотоэлектрической регистрацией база составляла всего 3 м. Им получено значение с = 29977614 км/с.

1.4 Метод вращающегося зеркала (метод Фуко)

Метод определения скорости света, разработанный в 1862 году Фуко, можно отнести к первым лабораторным методам. Этим методом Фуко измерил скорость света в средах, для которых показатель преломления n >1 .

Схема установки Фуко приведена на рис. 5.

Свет от источника S проходит через полупрозрачную пластинку Р , линзу L и падает на плоское зеркало M 1, которое может вращаться вокруг своей оси О , перпендикулярной к плоскости чертежа. После отражения от зеркала M 1 луч света направляется на неподвижное вогнутое зеркало М 2 , расположенное так, чтобы этот луч всегда падал перпендикулярно к его поверхности и отражался по тому же пути на зеркало M 1 . Если зеркало M 1 неподвижно, то отраженный от него луч возвратится по своему первоначальному пути к пластинке Р , частично отражаясь от которой он даст изображение источника S в точке S 1 .

При вращении зеркала M 1 за время, пока свет проходит путь 2 l между обоими зеркалами и возвращается обратно (), вращающееся с угловой скоростью зеркало M 1 повернется на угол

и займет положение, показанное на рис. .5 пунктиром. Отраженный от зеркала луч по отношению к первоначальному будет повернут на угол и даст изображение источника в точке S 2 . Измерив расстояние S 1 S 2 и зная геометрию установки, можно определить угол и вычислить скорость света:

Таким образом, суть метода Фуко заключается в точном измерении времени прохождения светом расстояния 2 l . Это время оценивается по углу поворота зеркала M 1 , скорость вращения которого известна. Угол поворота определяется на основе измерений смещения S 1 S 2 . В опытах Фуко скорость вращения составляла 800 об/с, база l изменялась от 4 до 20 км. Было найдено значение с = 298000500 км/с.

Фуко на своей установке впервые измерил скорость света в воде. Поместив между зеркалами трубу, наполненную водой, Фуко обнаружил, что угол сдвига возрос в ѕ раза, а следовательно, рассчитанная по записанной выше формуле скорость распространения света в воде оказалась равной (3/4)с . Вычисленный по формулам волновой теории показатель преломления света в воде получился равным, что полностью соответствует закону Снеллиуса. Таким образом, на основе результатов этого эксперимента была подтверждена справедливость волновой теории света, и был закончен полутора вековой спор в ее пользу.

1.5 Метод Майкельсона

В 1926 году установка Майкельсона была выполнена между двумя горными вершинами, так что расстояние, проходимое лучом от источника до его изображения после отражений от первой грани восьмигранной зеркальной призмы, зеркал М 2 - М 7 и пятой грани, составляло около 35,4 км. Скорость вращения призмы (приблизительно 528 об/с) выбиралась такой, чтобы за время распространения света от первой грани до пятой призма успевала повернуться на 1/8 оборота. Возможное смещение зайчика при неточно подобранной скорости играло роль поправки. Скорость света, определенная в этом опыте, оказалась равной 2997964 км/с.

Из других методов отметим выполненное в 1972 году измерение скорости света путем независимого определения длины волны и частоты света. Источником света служил гелий-неоновый лазер, генерирующий излучение 3,39 мкм. При этом длина волны измерялась с помощью интерферометрического сравнения с эталоном длины оранжевого излучения криптона, а частота - с помощью радиотехнических методов. Скорость света

определенная этим методом, составила 299792,45620,001 км/с. Авторы метода считают, что достигнутая точность может быть повышена за счет улучшения воспроизводимости измерений эталонов длины и времени.

В заключение отметим, что при определении скорости света измеряется групповая скорость и , которая лишь для вакуума совпадает с фазовой.

Размещено на Allbest.ru

Подобные документы

    Разделение четырехмерного пространства на физическое время и трехмерное пространство. Постоянство и изотропия скорости света, определение одновременности. Расчет эффекта Саньяка в предположении анизотропии скорости света. Изучение свойств NUT-параметра.

    статья , добавлен 22.06.2015

    Видимое излучение и теплопередача. Естественные, искусственные люминесцирующие и тепловые источники света. Отражение и преломление света. Тень, полутень и световой луч. Лунное и солнечное затмения. Поглощение энергии телами. Изменение скорости света.

    презентация , добавлен 27.12.2011

    Преобразование света при его падении на границу двух сред: отражение (рассеяние), пропускание (преломление), поглощение. Факторы изменения скорости света в веществах. Проявления поляризации и интерференции света. Интенсивность отраженного света.

    презентация , добавлен 26.10.2013

    Развитие представления о пространстве и времени. Парадигма научной фантастики. Принцип относительности и законы сохранения. Абсолютность скорости света. Парадокс замкнутых мировых линий. Замедление хода времени в зависимости от скорости движения.

    реферат , добавлен 10.05.2009

    Понятие дисперсии света. Нормальная и аномальная дисперсии. Классическая теория дисперсии. Зависимость фазовой скорости световых волн от их частоты. Разложение белого света дифракционной решеткой. Различия в дифракционном и призматическом спектрах.

    презентация , добавлен 02.03.2016

    Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа , добавлен 07.03.2007

    Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.

    презентация , добавлен 07.05.2012

    Спектральные измерения интенсивности света. Исследование рассеяния света в магнитных коллоидах феррита кобальта и магнетита в керосине. Кривые уменьшения интенсивности рассеянного света со временем после выключения электрического и магнитного полей.

    статья , добавлен 19.03.2007

    Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат , добавлен 02.11.2008

    Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

Впервые скорость света была определена датским астрономом Ремером в 1676 г. До этого времени среди ученых существовало два противоположных мнения. Одни полагали, что скорость света бесконечно велика. Другие же хотя и считали ее очень большой, тем не менее конечной. Ремер подтвердил второе мнение. Он правильно связал нерегулярности во времени затмений спутников Юпитера со временем, которое необходимо свету для прохождения по диаметру орбиты Земли вокруг Солнца. Он впервые сделал вывод о конечной скорости распространения света и определил ее величину. По его подсчетам, скорость света получилась равной 300870 км/с в современных единицах. (Данные взяты из книги: Г. Липсон. Великие эксперименты в физике.)

Фуко метод

Метод измерения скорости света, заключающийся в последовательном отражении пучка света от быстро вращающегося зеркала, затем от второго неподвижного зеркала, расположенного на точно измеренном расстоянии, и затем вновь от первого зеркала, успевшего повернуться на некоторый малый угол. Скорость света определяют (при известных скорости вращения первого зеркала и расстоянии между двумя зеркалами) по изменению направления трижды отражённого светового луча. Используя этот метод, скорость света в воздухе впервые измерил Ж. Б. Л. Фуко в 1862.

В 1878–82 и 1924–26 провёл измерения скорости света, долгое время остававшиеся непревзойдёнными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885–87) подтвердил с большой точностью независимость скорости света от скорости движения Земли.

На том же принципе основано и действие Угловых отражателей оптического диапазона, который представляет собой небольшую трёхгранную призму из прозрачного стекла, грани которой покрыты тонким слоем металла. Такой У. о. обладает высоким Sэф из-за большого отношения а/l. Для получения всенаправленного У. о. используют систему нескольких призм. Оптические У. о. получили распространение после появления лазеров. Они используются в навигации, для измерения расстояний и скорости света в атмосфере, в экспериментах с Луной и др. Оптические У. о. в виде цветного стекла со многими углублениями тетраэдрической формы применяются как средство сигнализации в автодорожном хозяйстве и в быту.

Знаменитый американский ученый Альберт Майкельсон почти всю жизнь посвятил измерению скорости света.

Однажды ученый осматривал предполагаемый путь светового луча вдоль полотна железной дороги. Он хотел построить еще более совершенную установку для еще более точного метода измерения скорости света. До этого он уже работал над этой проблемой несколько лет и добился самых точных для того времени значений. Поведением ученого заинтересовались газетные репортеры и, недоумевая, спросили, что он тут делает. Майкельсон объяснил, что он измеряет скорость света.

– А зачем? – последовал вопрос.

– Потому что это дьявольски интересно, – ответил Майкельсон.

И никто не мог предполагать, что эксперименты Майкельсона станут фундаментом, на котором будет построено величественное здание теории относительности, дающей совершенно новое представление о физической картине мира.

Пятьдесят лет спустя Майкельсон все еще продолжал свои измерения скорости света.

Kaк-то раз великий Эйнштейн задал ему такой же вопрос:

– Потому что это дьявольски интересно! – спустя полвека ответил Майкельсон и Эйнштейну.

Метод Физо

В 1849 г. А. Физо поставил лабораторный опыт по измерению скорости света. Свет от источника 5 проходил через прерыватель К (зубья вращающегося колеса) и, отразившись от зеркала 3, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Это наступит при условии, что время прохождения света туда и обратно t=2L/c окажется равным времени поворота зубчатого колеса на половину прорези t2=T/(2N)=1/(2Nv). Здесь L – расстояние от зубчатого колеса до зеркала; Т – период вращения зубчатого-колеса; N – число зубцов; v=1/T – частота вращения. Из равенства t1=t2 следует расчетная формула для определения скорости света данным методом:

c=4LNv

Используя метод вращающегося затвора, Физо в 1849 г. получил значение скорости света с=3,13-10**5 км/с, что было совсем неплохо по тем временам. В дальнейшем использование различных затворов позволило существенно уточнить значение ско- рости света. Так, в 1950 г. получено значение скорости света (в вакууме), равное:

с= (299 793,1 ±0,25) км/с.

Остроумное решение сложной задачи определения скорости света было найдено в 1676 г. датским астрономом Олафом Ремером.

Олаф Ремер, наблюдая движение спутников Юпитера, заметил, что во время затмения спутник выходит из области тени периодически запаздывая. Ремер объяснил это тем, что к моменту очередного наблюдения Земля находится в иной точке своей орбиты, чем в предыдущий раз, и, следовательно, расстояние между ней и Юпитером иное. Максимальная величина, на которую возрастает это расстояние, равняется диаметру земной орбиты. И именно тогда, когда Земля больше всего удалена от Юпитера, спутник выходит из тени с наибольшим запаздыванием.

Сопоставив эти данные, Ремер пришел к выводу, что свет от спутника проходит расстояние, равное диаметру земной орбиты – 299 106 тыс. км в 1320 сек. Такой вывод не только убеждает в том, что скорость распространения света не может быть мгновенной, но и позволяет определить величину скорости; для этого надо разделить величину диаметра орбиты Земли на время запаздывания спутника.

По вычислениям Ремера, скорость распространения света оказалась равной 215 тыс. км / сек.

Последующие, более совершенные методы наблюдения за временем запаздывания спутников Юпитера позволили уточнить эту величину. Скорость распространения света, по современным данным, равна 299 998,9 км/сек. Для практических расчетов принимают скорость света в вакууме равной 300 тыс. км/сек. Огромная величина скорости света ошеломила не только современников Ремера, но и послужила поводом для отрицания корпускулярной теории света.

Если свет представляет собой поток корпускул, то при такой скорости движения энергии их должна быть очень велика. Удары корпускул при падении на тела должны быть ощутимы, т. е. Свет должен оказывать давление!

Следующим после Ремера скорость света измерял Джеймс Брадлей.

Переезжая однажды через р.Темзу, Брадлей обратил внимание на то, что во время движения лодки ветер дул как будто по другому направлению, чем это было на самом деле. Это наблюдение, вероятно, и дало ему основание объяснить аналогичным явлением кажущееся движение неподвижных звезд, называемое аберрацией света.

Свет звезды достигает Земли подобно тому, как капли отвесно падающего дождя падают на окна движущегося вагона. Движение луча света и движение Земли складываются.

Следовательно, чтобы свет от звезды, расположенной перпендикулярно к плоскости движения Земли, попадал в телескоп, его необходимо наклонить на некоторый угол, который зависит не от расстояния до звезды, а только, от скорости света и скорости движения Земли (она была уже в то время известна – 30 км / сек).

Измерив угол, Брадлей нашел, что скорость света равна 308 тыс. км/сек. Измерения Брадлея, как и Ремера, не разрешали спорного вопроса о значении постоянной в законе преломления, так как Брадлей и Ремер определяли скорость сета не в какой-либо среде, а в космическом пространстве.

Идею нового метода измерения скорости света предложил Д. Араго. Осуществили ее двумя различными способами И. Физо и Л. Фуко.

Физо в 1849 г. тщательно измерил расстояние между двумя пунктами. В доном из них он поместил источник света, а в другом – зеркало, от которого свет должен отразиться и вновь вернуться к источнику.

Для того чтобы определить скорость распространения света, надо было очень точно измерить промежуток времени, который необходим свету для прохождения удвоенного пути от источника до зеркала.

Расстояние от источника, находящегося в предместье Парижа Сюрене, до зеркала, установленного на Монмартре, составляло 8633 м. Значит, удвоенное расстояние было 17 266 м. Время, в течении которого свет пройдет это расстояние, если воспользоваться результатами измерения скорости Ремера, будет не более шести стотысячных долей секунды.

Средств для измерения столь малых промежутков времени тогда не было.

Значит, эти измерения следовало исключить из опыта.

В Сюрене была установлена зрительная труба, направленная на Париж. Сбоку через другую трубку поступал свет от источника. От поверхности прозрачной стеклянной пластинки, расположенной в трубке под углом в 45 , свет частично отражался по направлению к Парижу.

В Париже на Монмартре была установлена другая зрительная труба, в которую попадал свет, отраженный прозрачной пластинкой.

Глядя в окуляр, можно было видеть источник света, расположенный за боковой трубкой. Окуляр трубы, установленной на Монмартре, был заменен зеркалом, благодаря чему свет возвращался в Сюрен.

Отраженный зеркалом на Монмартре свет, встречая на обратном пути внутри трубы прозрачную стеклянную пластинку, частично отражался от ее поверхности, а сект, прошедший через пластинку и окуляр трубы, попадал в глаз наблюдателя.

Зрительная труба в Сюрене, кроме боковой трубки, через которую поступал свет, имела прорезь в том месте, где располагался фокус объектива и окуляра. Сквозь прорезь проходило зубчатое колесо, которое приводилось в движение часовым механизмом. Когда колесо было неподвижно и установлено так, что свет проходил между зубцами, то в окуляре трубы был виден свет, отраженный от зеркала на Монмартре.

Когда колесо было приведено в движение, свет исчез. Произошло это в тот момент, когда свет, прошедши между зубцами колеса по направлению к Парижу, встретил на обратном пути зубец, а не промежуток между зубцами.

Для того чтобы свет в окуляре появился вновь, необходимо было удвоить число оборотов колеса.

При дальнейшем увеличении числа оборотов свет вновь исчез.

В опытах Физо зубчатое колесо имело 720 зубцов. Первое исчезновение сета наблюдалось, когда колесо совершало 12,67 оборота в секунду.

Один оборот оно делало за время, равное 1/12,67 сек. При этом промежуток между зубцами сменялся зубцом. Если зубцов 720, то промежутков тоже 720. Следовательно, смена происходит за время, равное 1/12,67*2*720 = 1/18245 сек.

За это время свет проходил удвоенное расстояние от Сюрена до Монмартра.

Следовательно, его скорость была равной 315 тыс. км/сек.

Таким остроумным методом удалось избежать измерений малых промежутков времени и все же определить скорость света.

Сравнительно большое расстояние между источником света и зеркалом не позволяло на пути света поместить какую-либо среду. Физо определял скорость света в воздухе.

Скорость света в других средах была определена Фуко в 1862 г. В опытах Фуко расстояние от источника до зеркала было всего в несколько метров. Это позволило поместить на пути света трубку, заполненную водой.

Фуко установил, что скорость распространения света в различных средах меньше, чем в воздухе. В воде, например, она составляет величину, равную скорости света в воздухе. Полученные результаты разрешили двухвековой спор между корпускулярной и волновой теориями о величине постоянной в законе преломления. Правильное значение в законе преломления дает волновая теория света.

Измерения скорости распространения света в различных средах позволили ввести понятие оптической плотности вещества.

Список использованной литературы

  1. Имитационное моделирование. – [Электронный ресурс] – Режим доступа: webcache.googleusercontent.com – Дата доступа: апрель 2014 года. – Загл. с экрана.